

Analysis

Kuan-Yu Chen (陳冠宇)

2019/02/27 @ TR-310-1, NTUST

Review

- **Algorithm:** Any well-defined computation procedure that takes some value, or set of values, as input and produces some value, or set of values, as output
- Analyzing an algorithm has come to mean predicting the **resources** that the algorithm requires
 - Most often we want to measure the computational time
- For insertion sort
 - The best case

$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8) \times n - (c_2 + c_4 + c_5 + c_8)$$

- The worst case

$$T(n) = \left(\frac{c_5 + c_6 + c_7}{2} \right) \times n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5 - c_6 - c_7}{2} + c_8 \right) \times n - (c_2 + c_4 + c_5 + c_8)$$

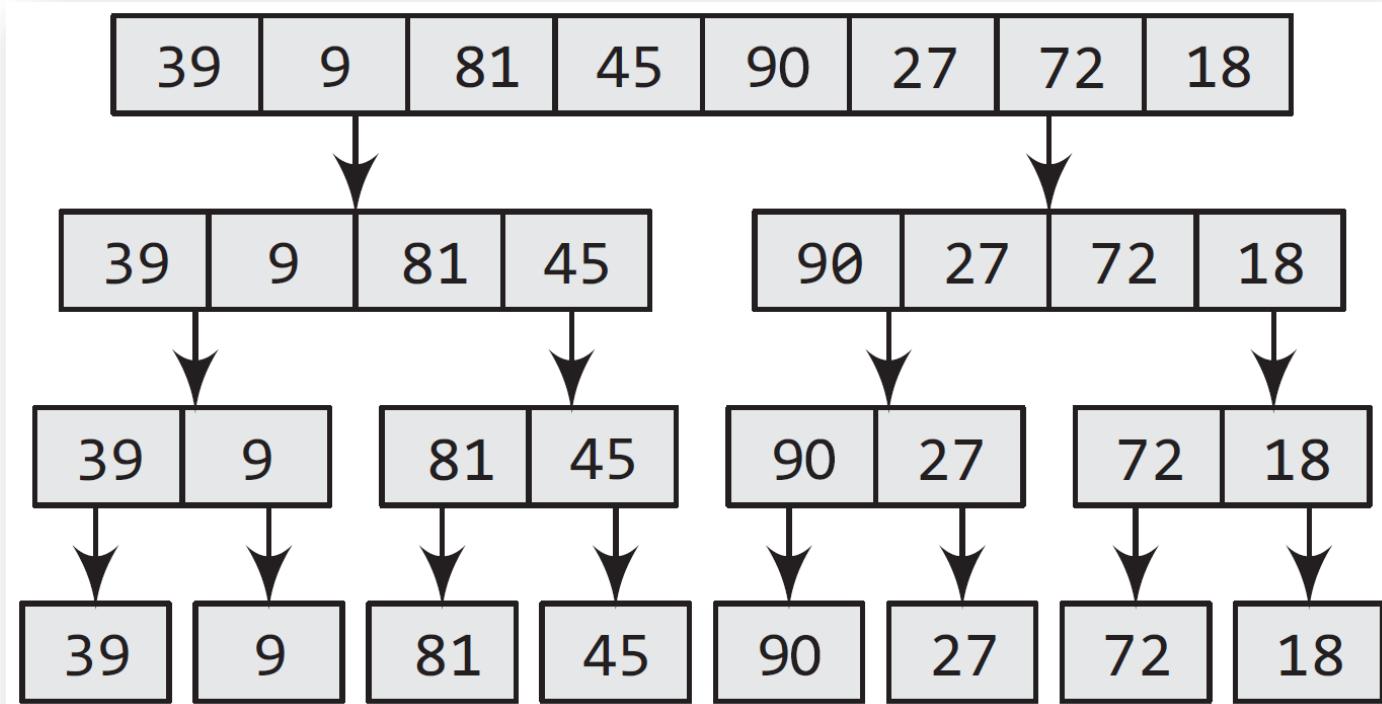
Merge Sort.

- Merge sort is a sorting algorithm that uses the **divide**, **conquer**, and **combine** algorithmic paradigm
 - **Divide** means partitioning the n -element array to be sorted into two sub-arrays
 - Divide the problem into a number of subproblems that are smaller instances of the same problem
 - **Conquer** means sorting the two sub-arrays recursively
 - Conquer the subproblems by solving them recursively
 - If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner
 - **Combine** means merging the two sorted sub-arrays
 - Combine the solutions to the subproblems into the solution for the original problem

Example.

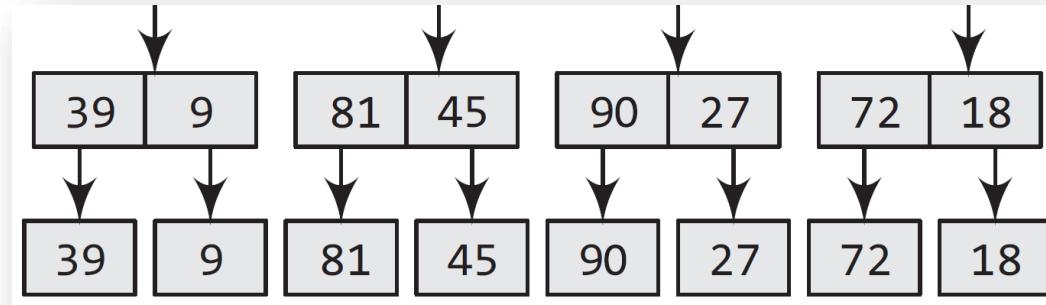
- Sort the given array using merge sort

- Divide and Conquer

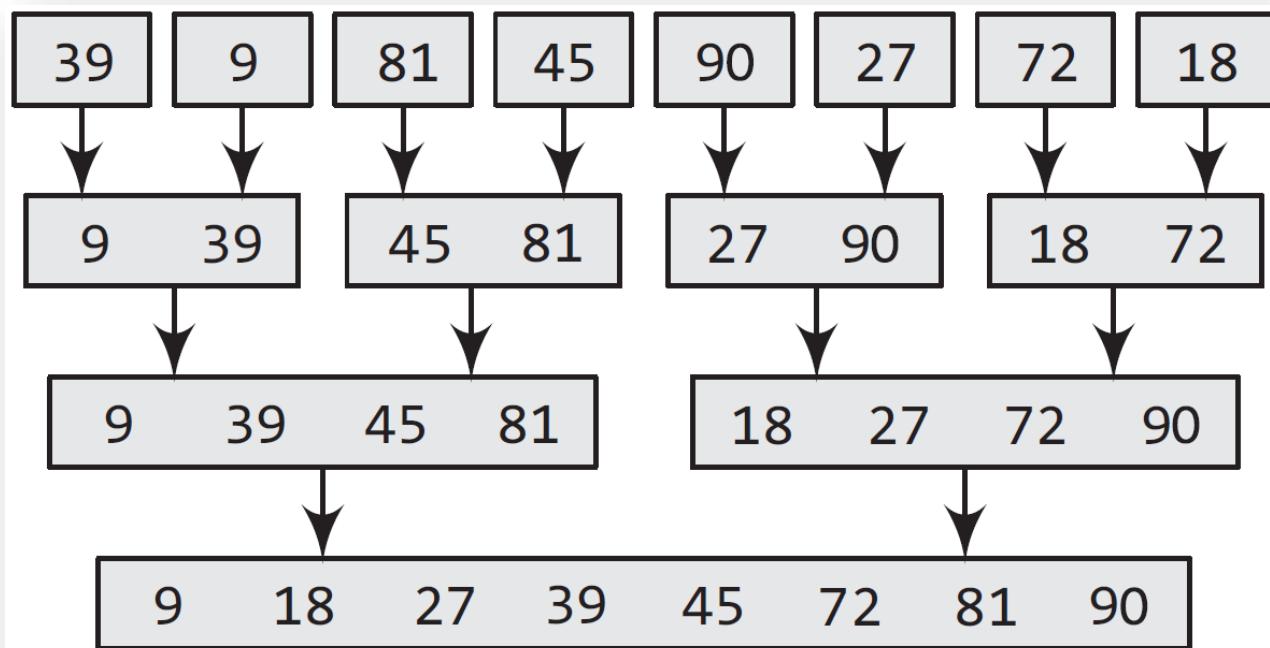


Example..

- Divide and Conquer

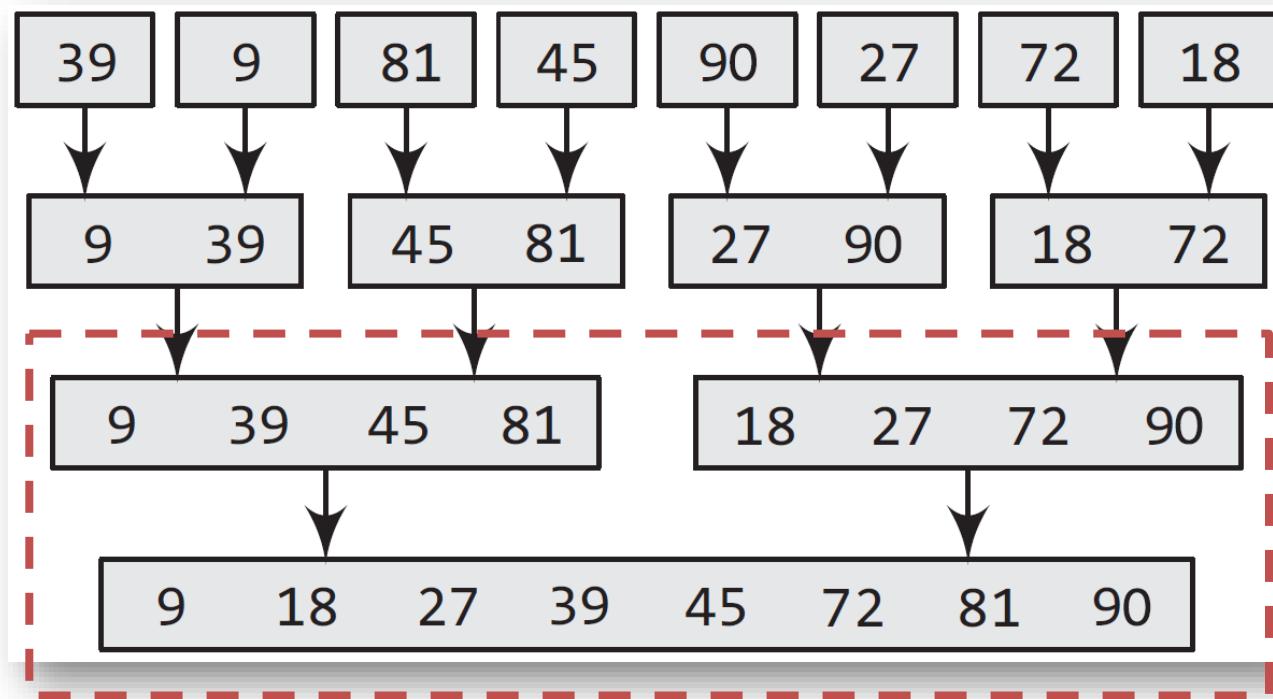


- Combine

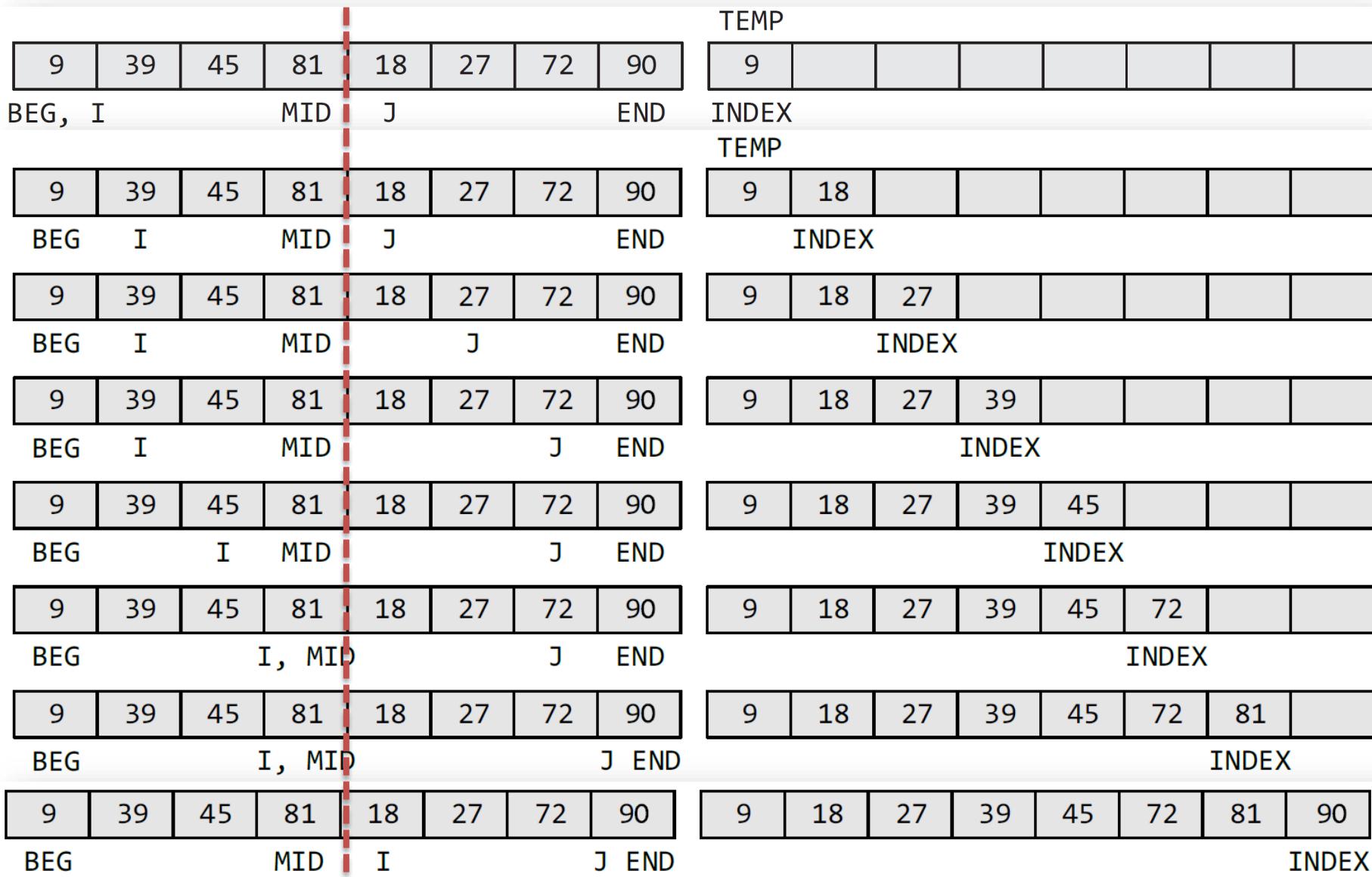


Merge Sort..

- The concept of the merge function is to compare two sub-arrays (ARR[I] and ARR[J]), the smaller of the two is placed in a temp array (TEMP) at the location specified by a index (INDEX) and subsequently the index value (I or J) is incremented
 - Example for the merge function



Merge Sort....



Merge Sort...

MERGE_SORT(ARR, BEG, END)

Step 1: IF BEG < END

 SET MID = (BEG + END)/2

 CALL MERGE_SORT (ARR, BEG, MID)

 CALL MERGE_SORT (ARR, MID + 1, END)

 MERGE (ARR, BEG, MID, END)

 [END OF IF]

Step 2: END

Merge Sort.....

MERGE (ARR, BEG, MID, END)

Step 1: [INITIALIZE] SET I = BEG, J = MID + 1, INDEX = 0

Step 2: Repeat while (I <= MID) AND (J<=END)

 IF ARR[I] < ARR[J]

 SET TEMP[INDEX] = ARR[I]

 SET I = I + 1

 ELSE

 SET TEMP[INDEX] = ARR[J]

 SET J = J + 1

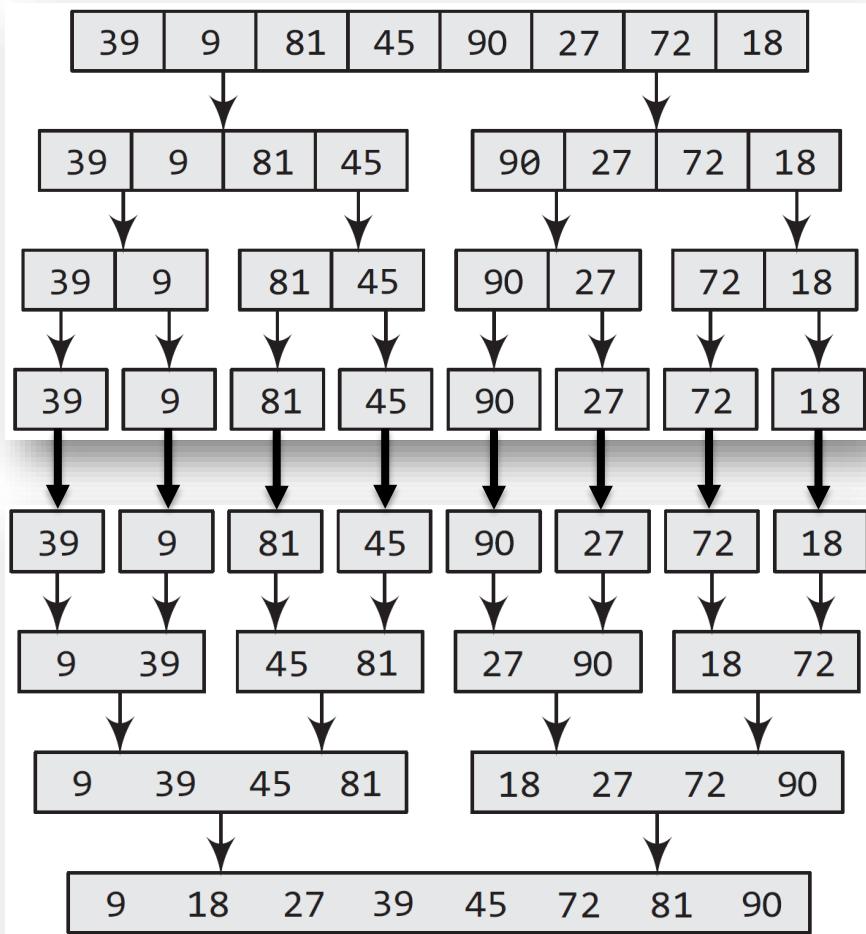
 [END OF IF]

 SET INDEX = INDEX + 1

[END OF LOOP]

Analysis.

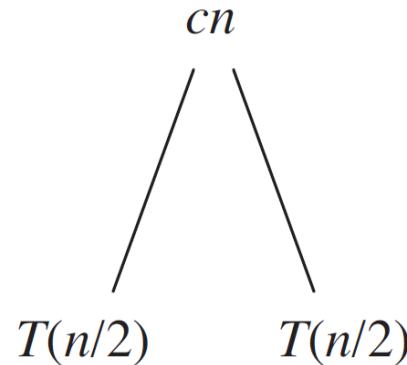
$$T(n) = \begin{cases} c & , \text{if } n = 1 \\ 2 \times T\left(\frac{n}{2}\right) + c \times n, & \text{if } n > 1 \end{cases}$$



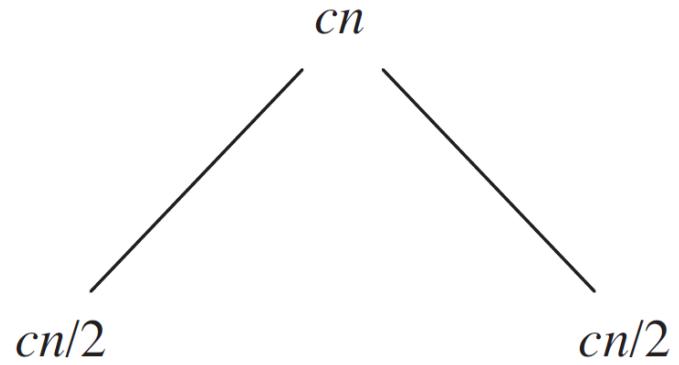
- Divide
 - The divide step just computes the middle of the subarray, which takes constant time $D(n)$
- Conquer
 - We recursively solve two subproblems $T(n) = 2 \times T\left(\frac{n}{2}\right)$
- Combine
 - We have already noted that the Merge procedure on an n -element subarray takes time $C(n)$

Analysis..

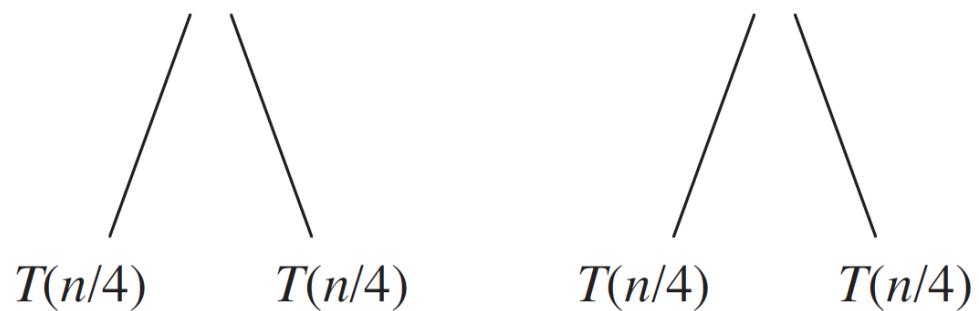
$T(n)$



(a)

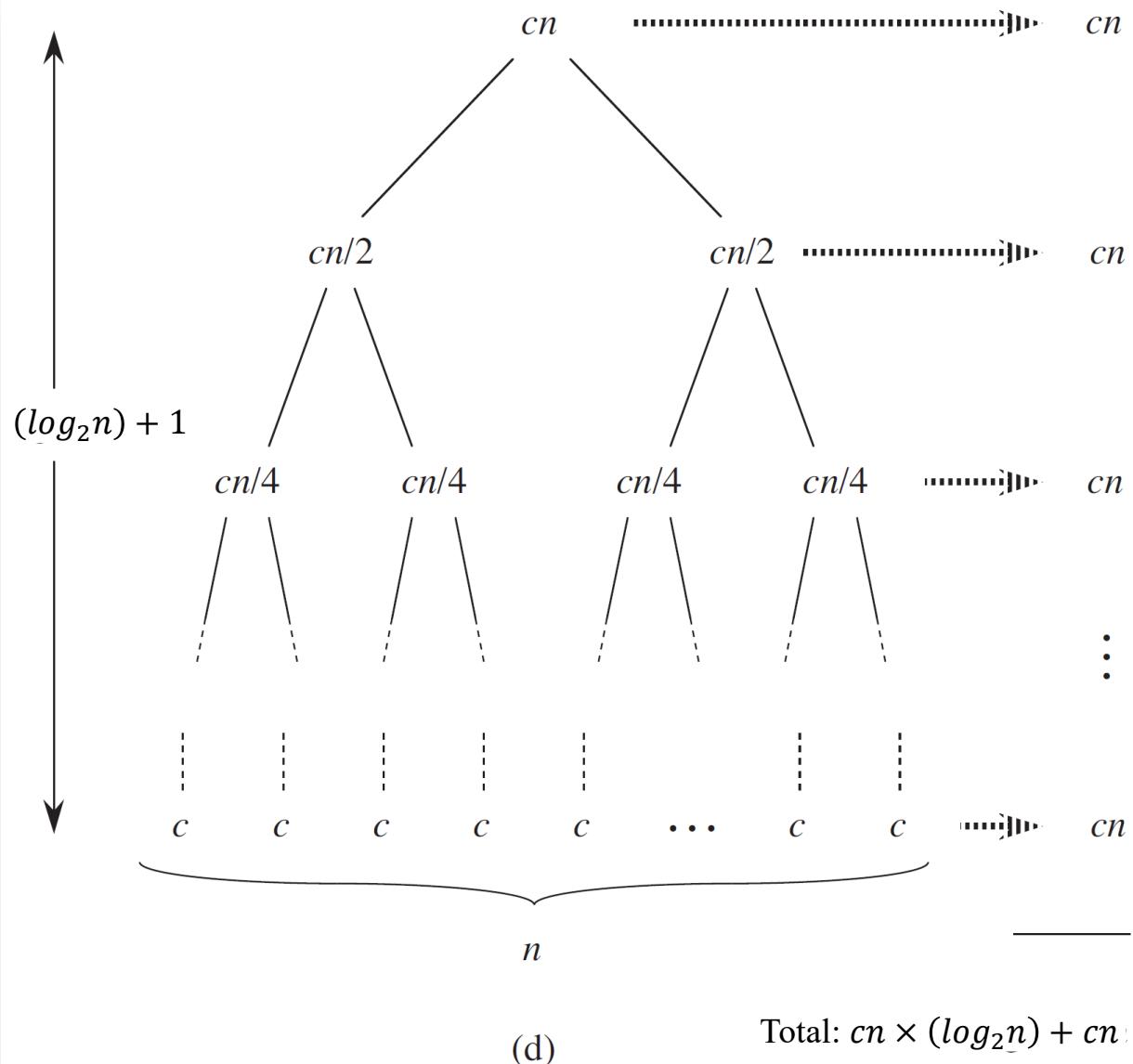


(b)



(c)

Analysis...



Faster than insertion sort!

Design an Algorithm

- We can choose from a wide range of algorithm design techniques
 - Incremental Approach
 - Insertion Sort
 - Divide-and-conquer Approach
 - Merge Sort
 - One advantage of divide-and-conquer algorithms is that their running times are often easily determined

Questions?

kychen@mail.ntust.edu.tw